满分5 > 初中数学试题 >

已知某种水果的批发单价与批发量的函数关系如图1所示. (1)请说明图中①、②两段...

已知某种水果的批发单价与批发量的函数关系如图1所示.
(1)请说明图中①、②两段函数图象的实际意义;
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.manfen5.com 满分网
(1)(2)中要注意变量的不同的取值范围; (3)可根据图中给出的信息,用待定系数的方法来确定函数.然后根据函数的特点来判断所要求的值. 【解析】 (1)图①表示批发量不少于20kg且不多于60kg的该种水果, 可按5元/kg批发, 图②表示批发量高于60kg的该种水果,可按4元/kg批发; (2)由题意得:, 函数图象如图所示. 由图可知批发量超过60时,价格在4元中, 所以资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果; (3)设日最高销售量为xkg(x>60),日零售价为p, 设x=pk+b,则由图②该函数过点(6,80),(7,40), 代入可得:x=320-40p,于是p= 销售利润y=x(-4)=-(x-80)2+160 当x=80时,y最大值=160, 此时p=6, 即经销商应批发80kg该种水果,日零售价定为6元/kg, 当日可获得最大利润160元.
复制答案
考点分析:
相关试题推荐
定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.
manfen5.com 满分网
(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内点.
(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)
(3)判断下列命题的真假,在括号内填“真”或“假”.
①任意凸四边形一定存在准内点.(______
②任意凸四边形一定只有一个准内点.(______
③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.(______
查看答案
如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

manfen5.com 满分网 查看答案
如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.
(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于F,AB=AC=5cm,sinA=manfen5.com 满分网,求⊙O的半径的长.

manfen5.com 满分网 查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.
manfen5.com 满分网
(1)求坡高CD;
(2)求斜坡新起点A与原起点B的距离(精确到0.1米).
查看答案
已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.
(1)求从中随机抽取出一个黑球的概率是多少;
(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是manfen5.com 满分网,求y与x之间的函数关系式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.