如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为______,数量关系为______.
②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)
(3)若AC=2
,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
考点分析:
相关试题推荐
2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.
(1)在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?
(2)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?
(3)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
查看答案
如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=______度时,四边形EDBC是等腰梯形,此时AD的长为______;
②当α=______度时,四边形EDBC是直角梯形,此时AD的长为______;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
查看答案
直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下:
请你用上面图示的方法,解答下列问题:
(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;
(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
查看答案
(1)观察与发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次的折叠基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
(2)实践与运用:
将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.
查看答案
观察下列各式及验证过程:
验证:
;
验证:
;
(1)按照上述两个等式及其验证过程的基本思路,猜想
的变形结果并进行验证;
(2)针对上述各式反映的规律,写出用n(n为大于等于2的整数)表示的等式,并进行验证.
查看答案