由于BC切⊙A于D,那么连接AD,可得出AD⊥BC,即△ABC的高AD=2;已知了底边BC的长,可求出△ABC的面积.
根据圆周角定理,易求得∠EAF=2∠P=80°,已知了圆的半径,可求出扇形AEF的面积.
图中阴影部分的面积=△ABC的面积-扇形AEF的面积.由此可求阴影部分的面积.
【解析】
连接AD,则AD⊥BC;
△ABC中,BC=4,AD=2;
∴S△ABC=BC•AD=4.
∵∠EAF=2∠EPF=80°,AE=AF=2;
∴S扇形EAF==;
∴S阴影=S△ABC-S扇形EAF=4-.