如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax
2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上.
(1)以O为位似中心,将△OAB放大,使得放大后的△OA
1B
1与△OAB对应线段的比为2:1,画出△OA
1B
1.(所画△OA
1B
1与△OAB在原点两侧);
(2)求出线段A
1B
1所在直线的函数关系式.
查看答案
如图,Rt△ABC中,∠BAC=90°,BC所在直线的解析式为
,AC=3,若AB的中点D在双曲线
上,求a的值?
查看答案
如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC与△PDB是否相似______(填“是”或“否”);
(2)当
=______时,
=4.
查看答案
如图,太子湾公园在“五一”黄金周为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改造,把倾角由45°减至30°,已知台阶在水平方向延长了4米(即DB=4米).
求:(1)台阶的高度是多少?
(2)改善后的台阶坡面会加长多少?
查看答案
以下左图形为杭州国际会议中心,是全国最大的球形建筑,如图1是球体的轴截面,已知这个球体的高度为86米,球的半径为50米,则这个国际会议中心建筑的占地面积为多少?(结果保留π)
查看答案