满分5 > 初中数学试题 >

如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点...

如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)求劣弧AB的长,就要先知道劣弧AB所对的圆心角的度数.过P作AB的垂线设垂足为M,那么在Rt△PMB中,根据圆的半径及P点的纵坐标即可求出∠BPM的度数,也就能求出∠APB的度数.然后根据弧长公式即可求出劣弧AB的长; (2)在Rt△PMB中,根据PB即半径的长以及PM即P点纵坐标的绝对值即可求出BM的长,也就求出了AB的值,由于A、B两点关于直线x=1对称,由此可确定A、B两点的坐标.根据圆和抛物线的对称性,C点必在直线PM上,根据P点的坐标和圆的半径的长即可得出C点的坐标.根据求出的A、B、C三点的坐标,可用待定系数法求出抛物线的解析式; (3)根据平行四边形的判定和性质可知:当线段OC与PD互相平分时,四边形OPCD是平行四边形,因此D点在y轴上,且OD=PC=2,因此D点的坐标为(0,-2)然后代入抛物线的解析式中即可判断出D是否在抛物线上. 【解析】 (1)如图,连接PB,过P作PM⊥x轴,垂足为M, 在Rt△PMB中,PB=2,PM=1, ∴∠MPB=60°, ∴∠APB=120° 的长=; (2)在Rt△PMB中,PB=2,PM=1,则MB=MA=,又OM=1, ∴A(1-,0),B(1+,0), 由抛物线及圆的对称性得知点C在直线PM上, 则C(1,-3). 点A、B、C在抛物线上,则 解之得, ∴抛物线解析式为y=x2-2x-2; (3)假设存在点D,使OC与PD互相平分,则四边形OPCD为平行四边形,且PC∥OD, 又PC∥y轴, ∴点D在y轴上, ∴OD=2,即D(0,-2), 又点D(0,-2)在抛物线y=x2-2x-2上, 故存在点D(0,-2),使线段OC与PD互相平分.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上.
(1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2:1,画出△OA1B1.(所画△OA1B1与△OAB在原点两侧);
(2)求出线段A1B1所在直线的函数关系式.
查看答案
如图,Rt△ABC中,∠BAC=90°,BC所在直线的解析式为manfen5.com 满分网,AC=3,若AB的中点D在双曲线manfen5.com 满分网上,求a的值?

manfen5.com 满分网 查看答案
如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC与△PDB是否相似______(填“是”或“否”);
(2)当manfen5.com 满分网=______时,manfen5.com 满分网=4.

manfen5.com 满分网 查看答案
如图,太子湾公园在“五一”黄金周为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改造,把倾角由45°减至30°,已知台阶在水平方向延长了4米(即DB=4米).
求:(1)台阶的高度是多少?
(2)改善后的台阶坡面会加长多少?
manfen5.com 满分网
查看答案
以下左图形为杭州国际会议中心,是全国最大的球形建筑,如图1是球体的轴截面,已知这个球体的高度为86米,球的半径为50米,则这个国际会议中心建筑的占地面积为多少?(结果保留π)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.