锐角△ABC中,BC=6,S
△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)
(1)△ABC中边BC上高AD=______;
(2)当x=______时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
考点分析:
相关试题推荐
如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知
,这时我们把关于x的形如
的一元二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于x的“勾系一元二次方程”
必有实数根;
(3)若x=-1是“勾系一元二次方程”
的一个根,且四边形ACDE的周长是6
,求△ABC面积.
查看答案
如图1是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:
x/m | 5 | 10 | 20 | 30 | 40 | 50 |
y/m | 0.125 | 0.5 | 2 | 4.5 | 8 | 12.5 |
(1)请你以上表中的各对数据(x,y)作为点的坐标,尝试在图2所示的坐标系中画出y关于x的函数图象;
(2)①填写下表:
x | 5 | 10 | 20 | 30 | 40 | 50 |
| | | | | | |
②根据所填表中数据呈现的规律,猜想出用x表示y的二次函数的表达式:______;
(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能否在这个河段安全通过?为什么?
查看答案
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为1cm/s.
(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;
(2)若BD=12cm,AC=16cm,当运动时间t为何值时,以D、E、B、F为顶点的四边形是矩形?
查看答案
如图1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分AD=0.5m,请求出木板CD的长度?
(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m)
查看答案
如图,抛物线y
1=-x
2+2向右平移1个单位得到抛物线y
2,回答下列问题:
(1)抛物线y
2的顶点坐标______;
(2)阴影部分的面积S=______;
(3)若再将抛物线y
2绕原点O旋转180°得到抛物线y
3,求抛物线y
3的解析式.
查看答案