满分5 > 初中数学试题 >

AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线...

AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合.
(1)求证:△AHD∽△CBD;
(2)连HO,若CD=AB=2,求HD+HO的值.

manfen5.com 满分网
(1)要证△AHD∽△CBD,只要证明这两个三角形的两组对边的比相等,就可以证出; (2)①设OD=x,则BD=1-x,AD=1+x,由Rt△AHD∽Rt△CBD可用x表示出DH的值,在Rt△HOD中利用勾股定理可用x表示出OH的值,进而可得出结论; ②当点E移动到使D与O重合的位置时,这时HD与HO重合,由Rt△AHO∽Rt△CBO,利用对应边的比例式为方程,可以算出HD=HO=,即HD+HO=1; ③当D在OA段时BD=1+x,AD=1-x,证明同①. (1)证明:AB是⊙O的直径 ∴∠AEB=90°,则∠ABC+∠BAE=90°, 又∵CD⊥AB, ∴∠BAE+∠AHD=90°, ∴∠AHD=∠ABC, 又∵∠ADH=∠CDB=90°, ∴△AHD∽△CBD. (2)【解析】 设OD=x,则BD=1-x,AD=1+x, ∵Rt△AHD∽Rt△CBD, 则HD:BD=AD:CD, 即HD:(1-x)=(1+x):2, 即HD=, 在Rt△HOD中,由勾股定理得: OH==, 所以HD+HO=+=1; ②当点E移动到使D与O重合的位置时,这时HD与HO重合,由Rt△AHO∽Rt△CBO,利用对应边的比例式为方程,可以算出HD=HO=,即HD+HO=1; ③当D在OA段时BD=1+x,AD=1-x,证明同①∵Rt△AHD∽Rt△CBD, 则HD:BD=AD:CD, 即HD:(1-x)=(1+x):2, 即HD=, 在Rt△HOD中,由勾股定理得: OH==, 所以HD+HO=+=1.
复制答案
考点分析:
相关试题推荐
已知:等腰Rt△ABC中,∠A=90°,
(1)如图1,E为AB上任意一点,以CE为斜边作等腰Rt△CDE,连接AD,则有AD∥BC;
(2)若将等腰Rt△ABC改为正△ABC,如图2所示,E为AB边上任一点,△CDE为正三角形,连接AD,上述结论还成立吗?答______
(3)若△ABC为任意等腰三角形,AB=AC,如图3,E为AB上任一点,△DEC∽△ABC,连接AD,请问AD与BC的位置关系怎样?答:______
请你在上述3个结论中,任选一个结论进行证明.

manfen5.com 满分网 查看答案
如图,Rt△ABC的斜边AB=5,cosA=manfen5.com 满分网
(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);
(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.

manfen5.com 满分网 查看答案
张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:
张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;
王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中,从中随机取出上个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.
请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平?

manfen5.com 满分网 查看答案
如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=manfen5.com 满分网的图象交于A(1,4)、B(3,m)两点.
(1)求一次函数的解析式;
(2)求△AOB的面积.

manfen5.com 满分网 查看答案
“五一”节,小雯和同学一起到游乐场玩大型摩天轮,摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m).
(1)经过2min后小雯到达点Q,如图所示,此时他离地面的高度是多少?
(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.