操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:
(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.
考点分析:
相关试题推荐
已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
求证:
(1)AD=BD;
(2)DF是⊙O的切线.
查看答案
如图,点P在圆O外,PA与圆O相切于A点,OP与圆周相交于C点,点B与点A关于
直线PO对称,已知OA=4,PA=
.求:
(1)∠POA的度数;
(2)弦AB的长;
(3)阴影部分的面积.
查看答案
如图,四边形ABCD是边长为1的正方形,且DE=
,△ABF是△ADE的旋转图形.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)AF的长度是多少?
(4)如果连接EF,那么△AEF是怎样的三角形?
查看答案
市人民政府为了解决群众看病难的问题,决定下调药品的价格,某种药品,经过连续两次降价后,由每盒200元调至128元,求这种药品平均每次降价的百分率是多少?
查看答案