满分5 > 初中数学试题 >

某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价3...

某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.
按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)
(1)等量关系为:甲商品总进价+乙商品总进价=2700,根据此关系列方程即可求解; (2)关系式为:甲商品件数×(20-15)+乙商品件数×(45-35)≥750,甲商品件数×(20-15)+乙商品件数×(45-35)≤760; (3)第一天的总价为200元,打折最低应该出270元,所以没有享受打折,第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出数量. 【解析】 (1)设购进甲、乙两种商品分别为x件,(100-x)件,根据题意得 15x+35(100-x)=2700 解得x=40 则100-40=60 答:甲种商品40件,乙种商品60件. (2)设该商场进甲种商品a件,则购进乙种商品(100-a)件,根据题意得 (20-15)a+(45-35)(100-a)≥750 (20-15)a+(45-35)(100-a)≤760 因此,不等式组的解集为48≤a≤50. 根据题意得值应是整数,所以a=48或a=49或a=50 该商场共有三种进货方案: 方案一:购进甲种商品48件,乙种商品52件; 方案二:购进甲种商品49件,乙种商品51件; 方案三:购进甲种商品50件,乙种商品50件. (3)根据题意得 第一天只购买甲种商品不享受优惠条件, ∴200÷20=10件 第二天只购买乙种商品有以下两种情况: 情况一:购买乙种商品打九折,324÷90%÷45=8件; 情况二:购买乙种商品打八折,324÷80%÷45=9件. 一共可购买甲、乙两种商品10+8=18件或10+9=19件.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,已知∠ACB=90°,且CH⊥AB,HE⊥BC,HF⊥AC.
求证:(1)△HEF≌△EHC;
(2)△HEF∽△HBC.

manfen5.com 满分网 查看答案
如图(一),在平面直角坐标系中,射线OA与x轴的正半轴重合,射线OA绕着原点O逆时针到OB位置,把转过的角度记为α,把射线OA称为∠α的始边,射线OB称为∠α的终边、设α是一个任意角,α的终边上任意一点P(除端点外)的坐标是P(x,y),它到原点的距离是manfen5.com 满分网,那么定义:∠α的正弦manfen5.com 满分网,∠α的余弦manfen5.com 满分网,∠α的正切manfen5.com 满分网
根据以上的定义当α=120°时,如图(二)在120°角的终边OB上取一点P(manfen5.com 满分网),则manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
manfen5.com 满分网
根据以上所学知识填空:
(1)sin150°=______,cos150°=______
查看答案
某人往返于甲、乙两地,去时步行2千米,再乘汽车行10千米;回来时骑自行车,来去所用时间恰好一样,已知汽车的速度是步行速度的5倍,骑自行车比步行每小时多行8千米,求这人步行的速度.
查看答案
先化简,再求值manfen5.com 满分网,其中manfen5.com 满分网
查看答案
解不等式组,并把解集在数轴上表示出来.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.