满分5 > 初中数学试题 >

阅读下列材料,然后解答问题. 经过正四边形(即正方形)各顶点的圆叫作这个正四边形...

阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、manfen5.com 满分网及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①manfen5.com 满分网
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.
(1)根据正方形的圆的对称性,显然阴影部分的面积等于扇形OEF的面积减去三角形OEF的面积,即圆面积的减去正方形的面积的; (2)显然此时扇形OEF的面积仍是圆面积的,四边形OGBH的面积仍是正方形的面积的,故(1)中结论仍成立; (3)可以作OP⊥AB,OQ⊥BC,利用全等的知识即可证明四边形OGBH的面积和(2)中四边形的面积相等,故结论仍成立. 【解析】 (1)根据图形的对称性,得 S=; (2)结论仍成立. ∵扇形OEF的面积仍是圆面积的,四边形OGBH的面积仍是正方形的面积的, ∴S=; (3)作OP⊥AB,OQ⊥BC. 则∠OPG=∠OQH,OP=OQ, ∵∠POQ=∠MOH, ∴∠POG=∠QOH, ∵在△OPG与△OQH中, , ∴△OPG≌△OQH(ASA). 结合(2)中的结论即可证明.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,O为原点,每个小方格的边长为1个单位长度.在第一象限内有横、纵坐标均为整数的A、B两点,且OA=OB=manfen5.com 满分网
(1)写出A、B两点的坐标;
(2)画出线段AB绕点O旋转一周所形成的图形,并求其面积(结果保留π).

manfen5.com 满分网 查看答案
如图,已知△ABC中,AB=AC,∠A=36°.
(1)尺规作图:在AC上求作一点P,使BP+PC=AB;(保留作图痕迹,不写作法)
(2)在已作的图形中,连接PB,以点P为圆心,PB长为半径画弧交AC的延长线于点E,若BC=2cm,求扇形PBE的面积.

manfen5.com 满分网 查看答案
如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2
(1)求⊙O1的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.
(1)求证:△AOC≌△BOD;
(2)若OA=3cm,OC=1cm,求阴影部分的面积.

manfen5.com 满分网 查看答案
如图,有一直径是1cm的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形CAB.
(1)被剪掉的阴影部分的面积是多少?
(2)若用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少(结果可用根号表示).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.