满分5 > 初中数学试题 >

如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E...

如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.

manfen5.com 满分网
要证GE是⊙O的切线,只要证明∠OEG=90°即可. 证明:(证法一)连接OE,DE, ∵CD是⊙O的直径, ∴∠AED=∠CED=90°, ∵G是AD的中点, ∴EG=AD=DG, ∴∠1=∠2; ∵OE=OD, ∴∠3=∠4, ∴∠1+∠3=∠2+∠4, ∴∠OEG=∠ODG=90°, 故GE是⊙O的切线; (证法二)连接OE,OG, ∵AG=GD,CO=OD, ∴OG∥AC, ∴∠1=∠2,∠3=∠4. ∵OC=OE, ∴∠2=∠4, ∴∠1=∠3. 又OE=OD,OG=OG, ∴△OEG≌△ODG, ∴∠OEG=∠ODG=90°, ∴GE是⊙O的切线.
复制答案
考点分析:
相关试题推荐
如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C.
(1)BT是否平分∠OBA?证明你的结论;
(2)若已知AT=4,试求AB的长.

manfen5.com 满分网 查看答案
如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,求∠BAC的度数.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,点P是AB延长线上一点,PC切⊙O于点C,在射线PA上截取PD=PC,连接CD,并延长交⊙O于点E.
(1)求证:∠ABE=∠BCE;
(2)当点P在AB的延长线上运动时,判断sin∠BCE的值是否随点P位置的变化而变化,提出你的猜想并加以证明.

manfen5.com 满分网 查看答案
如图,C是射线OE上的一动点,AB是过点C的弦,直线DA与OE的交点为D,现有三个论断:①DA是⊙O的切线;②DA=DC;③OD⊥OB.请你以其中的两个论断为条件,另一个论断为结论,用序号写出一个真命题,用“★★⇒★”表示.并给出证明.我的命题是:______

manfen5.com 满分网 查看答案
如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.