满分5 > 初中数学试题 >

如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点...

如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD.
(1)试问:CG是⊙O的切线吗?说明理由;
(2)请证明:E是OB的中点;
(3)若AB=8,求CD的长.

manfen5.com 满分网
(1)已知点C在圆上,根据平行线的性质可得∠FCG=90°,即OC⊥CG;故CG是⊙O的切线. (2)方法比较多,应通过等边三角形的性质或三角形全等的思路来考虑; (3)Rt△OCE中,有三角函数的定义,可得CE=OE×cot30°,故代入OE=2可得CE的长. (1)【解析】 CG是⊙O的切线.理由如下: ∵CG∥AD, ∵CF⊥AD, ∴OC⊥CG. ∴CG是⊙O的切线; (2)证明: 第一种方法:连接AC,如图,(2分) ∵CF⊥AD,AE⊥CD且CF,AE过圆心O, ∴,. ∴AC=AD=CD. ∴△ACD是等边三角形.(3分) ∴∠D=60°. ∴∠FCD=30°.(4分) 在Rt△COE中, ∴OE=OB. ∴点E为OB的中点.(5分) 第二种方法:连接BD,如图, ∵AB为⊙O的直径, ∴∠ADB=90°. 又∵∠AFO=90°, ∴∠ADB=∠AFO,∴CF∥BD. ∴△BDE∽△OCE.(3分) . ∵AE⊥CD,且AE过圆心O, ∴CE=DE.(4分) ∴BE=OE. ∴点E为OB的中点.(5分) (3)【解析】 ∵AB=8, ∴OC=AB=4. 又∵BE=OE, ∴OE=2.(6) ∴CE=OE×cot30°=.(7分) ∵AB⊥CD, ∴CD=2CE=.(8分)
复制答案
考点分析:
相关试题推荐
如图,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,连接AD,BD,∠A=∠B=30度.BD是⊙O的切线吗?请说明理由.

manfen5.com 满分网 查看答案
如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.
(1)求证:DE与⊙O相切;
(2)若⊙O的半径为manfen5.com 满分网,DE=3,求AE.

manfen5.com 满分网 查看答案
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=2,求BC的值.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,且点C为⊙O上的一点,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.
(1)证明:CF是⊙O的切线;
(2)设⊙O的半径为1,且AC=CE,求MO的长.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
(1)求证:DE是⊙O的切线;
(2)如果⊙O的半径是manfen5.com 满分网cm,ED=2cm,求AB的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.