满分5 > 初中数学试题 >

已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,...

已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=manfen5.com 满分网OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.

manfen5.com 满分网
(1)求证:AB是⊙O的切线,可以转化为证∠OAB=90°的问题来解决.本题应先说明△ACO是等边三角形,则∠O=60°;又AC=OB,进而可以得到OA=AC=OB,则可知∠B=30°,即可求出∠OAB=90°. (2)作AE⊥CD于点E,CD=DE+CE,因而就可以转化为求DE,CE的问题,根据勾股定理就可以得到. (1)证明:如图,连接OA; ∵OC=BC,AC=OB, ∴OC=BC=AC=OA. ∴△ACO是等边三角形. ∴∠O=∠OCA=60°, ∵AC=BC, ∴∠CAB=∠B, 又∠OCA为△ACB的外角, ∴∠OCA=∠CAB+∠B=2∠B, ∴∠B=30°,又∠OAC=60°, ∴∠OAB=90°, ∴AB是⊙O的切线; (2)【解析】 作AE⊥CD于点E, ∵∠O=60°, ∴∠D=30°. ∵∠ACD=45°,AC=OC=2, ∴在Rt△ACE中,CE=AE=; ∵∠D=30°, ∴AD=2, ∴DE=AE=, ∴CD=DE+CE=+.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=manfen5.com 满分网,∠D=30度.
(1)求证:AD是⊙O的切线;
(2)若AC=6,求AD的长.
查看答案
如图,A是半径为12cm的⊙O上的定点,动点P从A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到A地立即停止运动.
(1)如果∠POA=90°,求点P运动的时间;
(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与⊙O的位置关系,并说明理由.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若过A点且与BC平行的直线交BE的延长线于G点,连接CG.当△ABC是等边三角形时,求∠AGC的度数.

manfen5.com 满分网 查看答案
AB是⊙O的直径,D是⊙O上一动点,延长AD到C使CD=AD,连接BC,BD.
(1)证明:当D点与A点不重合时,总有AB=BC;
(2)设⊙O的半径为2,AD=x,BD=y,用含x的式子表示y;
(3)BC与⊙O是否有可能相切?若不可能相切,则说明理由;若能相切,则指出x为何值时相切.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,∠BAC=60°,求DE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.