如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.
(1)求∠A的度数;
(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=
,求图中阴影部分的面积.
考点分析:
相关试题推荐
如图,已知半圆O的直径DE=12cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.
(1)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?
(2)当△ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域
与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
查看答案
在同一平面直角坐标系中有6个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(-2,-3),F(0,-4).
(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;
(2)若将直线EF沿y轴向上平移,当它经过点D时,设此时的直线为l
1.
①判断直线l
1与⊙P的位置关系,并说明理由;
②再将直线l
1绕点D按顺时针方向旋转,当它经过点C时,设此时的直线为l
2.求直线l
2与⊙P的劣弧CD围成的图形的面积.(结果保留π)
查看答案
问题探究:
(1)如图①所示是一个半径为
,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);
(2)如图②所示是一个底面半径为
,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;
(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.
查看答案
某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m
2和1200m
2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:
| 公园A | 公园B |
路程(千米) | 运费单价(元) | 路程(千米) | 运费单价(元) |
甲地 | 30 | 0.25 | 32 | 0.25 |
乙地 | 22 | 0.3 | 30 | 0.3 |
(注:运费单价指将每平方米草皮运送1千米所需的人民币)
(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m
2)
(2)请设计出总运费最省的草皮运送方案,并说明理由.
查看答案
已知点A(2,m)在直线y=-2x+8上.
(1)点A(2,m)向左平移3个单位后的坐标是______;直线y=-2x+8向左平移3个单位后的直线解析式是______;
(2)点A(2,m)绕原点顺时针旋转90°所走过的路径长为______;
(3)求直线y=-2x+8绕点P(-1,0)顺时针旋转90°后的直线解析式.
查看答案