满分5 > 初中数学试题 >

下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形...

下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示).

manfen5.com 满分网
(1)设∠AOB=n°,AO=R,则CO=R-8,利用圆锥的侧面展开图扇形的弧长等于圆锥底面周长作为相等关系列方程,并联立成方程组求解即可; (2)求纸杯的侧面积即为扇环的面积,需要用大扇形的面积减去小扇形的面积.纸杯表面积=S纸杯侧面积+S纸杯底面积. 【解析】 由题意可知:=6π,=4π,设∠AOB=n,AO=R,则CO=R-8, 由弧长公式得:=4π, ∴, 解得:n=45°,R=24cm, 故扇形OAB的圆心角是45度. ∵R=24cm,R-8=16cm, ∴S扇形OCD=×4π×16=32πcm2, S扇形OAB=×6π×24=72πcm2, 纸杯侧面积=S扇形OAB-S扇形OCD=72π-32π=40πcm2, 纸杯底面积=π•22=4πcm2, 纸杯表面积=40π+4π=44πcm2.
复制答案
考点分析:
相关试题推荐
如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm,高BC=8cm,求这个零件的表面积.(结果保留π)

manfen5.com 满分网 查看答案
铁匠王老五要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)请你帮助他算一算可以吗?
(1)请说明方案一不可行的理由;
(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.

manfen5.com 满分网 查看答案
如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.
(1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;
(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2,-1),则点C的坐标为______
(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为______
(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为______

manfen5.com 满分网 查看答案
如图,从一个半径为1的圆形铁皮中剪下一个圆心角为90°的扇形BAC.
(1)求这个扇形的面积;
(2)若将扇形BAC围成一个圆锥的侧面,这个圆锥的底面直径是多少?能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.

manfen5.com 满分网 查看答案
正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在manfen5.com 满分网上时,求正方形与扇形不重合的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.