如图Rt△ABO中,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原点O按顺时针方向旋转到OA′B′的位置.
(1)求点B′的坐标.
(2)求顶点A从开始到A′点结束经过的路径长.
考点分析:
相关试题推荐
在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.
查看答案
如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为
,其中
交CD于点P.
(1)求矩形A′BC′D′的对角线A′C′的长;
(2)求
的长;
(3)求图中
部分的面积.
(4)求图中
部分的面积.
查看答案
如图,在半径是2的⊙O中,点Q为优弧MN的中点,圆心角∠MON=60°,在NQ上有一动点P,且点P到弦MN的距离为x.
(1)求弦MN的长;
(2)试求阴影部分面积y与x的函数关系式,并写出自变量x的取值范围;
(3)试分析比较,当自变量x为何值时,阴影部分面积y与S
扇形OMN的大小关系.
查看答案
已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长;
(2)如图2,若PA
2+PC
2=2PB
2,请说明点P必在对角线AC上.
查看答案
如图,网格中每个小正方形的边长均为1.在AB的左侧,分别以△ABC的三边为直径作三个半圆围成图中的阴影部分.
(1)图中△ABC是什么特殊三角形?
(2)求图中阴影部分的面积;
(3)作出阴影部分关于AB所在直线的对称图形.
查看答案