满分5 > 初中数学试题 >

如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.

如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.

manfen5.com 满分网
根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则弧CFD=弧AEB,由FD=EB,得,弧FD=弧EB,由等量减去等量仍是等量得:弧CFD-弧FD=弧AEB-弧EB,即弧FC=弧AE,由等弧对的圆周角相等,得∠D=∠B. 方法(一) 证明:∵AB、CD是⊙O的直径, ∴弧CFD=弧AEB. ∵FD=EB, ∴弧FD=弧EB. ∴弧CFD-弧FD=弧AEB-弧EB. 即弧FC=弧AE. ∴∠D=∠B. 方法(二) 证明:如图,连接CF,AE. ∵AB、CD是⊙O的直径, ∴∠F=∠E=90°(直径所对的圆周角是直角). ∵AB=CD,DF=BE, ∴Rt△DFC≌Rt△BEA(HL). ∴∠D=∠B.
复制答案
考点分析:
相关试题推荐
如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的manfen5.com 满分网中点.
(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点.(直接写出结论)
查看答案
如图,点A、B、C是⊙O上的三点,AB∥OC.
(1)求证:AC平分∠OAB.
(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.
(1)若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变?若会改变,请说明理由;若不会改变,请求出EF的长;
(2)若AP=BP,求证四边形OEPF是正方形.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的一条弦,点C为manfen5.com 满分网的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.
(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;
(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.
manfen5.com 满分网
查看答案
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.