满分5 > 初中数学试题 >

如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2a,CD=a,...

如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2a,CD=a,BC=2,四边形BEFG是矩形,点E、F分别在腰BC、AD上,点G在AB上.设FG=x,矩形BEFG的面积为y.
(1)求y关于x的函数关系式;
(2)当矩形BEFG的面积等于梯形ABCD的面积的一半时,求x的值;
(3)当∠DAB=30°时,矩形BEFG是否能成为正方形?若能,求其边长;若不能,请说明理由.

manfen5.com 满分网
(1)过点D作DH⊥AB于H.由于△AGF∽△AHD,得到AG的值,有BG=AB-AG,再利用y=S矩形=FG•BG而得到y关于x的函数关系式. (2)求得梯形的面积,由矩形BEFG的面积等于梯形ABCD的面积的一半建立方程,求得x的值. (3)由正切的概念可得到CD=2,从而得到EF>2>FG,故矩形BEFG不能成为正方形. 【解析】 (1)过点D作DH⊥AB于H, ∵在矩形BEFG中,FG⊥AB,所以FG∥DH, ∴△AGF∽△AHD, ∴, 即,得, ∴. 因此, ∵y=FG•BG=x×=-ax2+2ax, 即所求的函数关系式为y=-ax2+2ax (0<x<2). (2)依题意,得-ax2+2ax=×(a+2a)×2, 因为a≠0,解以上方程得,x1=1,x2=3. 因为0<x≤2,所以x=3舍去,取x=1. 故当矩形BEFG的面积等于梯形ABCD的面积的一半时,x的值为1. (3)矩形BEFG不能成为正方形. 在Rt△AHD中,∵∠DAH=30°,∴,即 EF≥CD=a=2,即EF>2. 又∵0<x≤2,即0<FG≤2,∴EF>FG, 因此矩形BEFG不能成为正方形.
复制答案
考点分析:
相关试题推荐
如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F.FE与DC的延长线相交于点G,连接DE,DF.
(1)求证:△BEF∽△CEG;
(2)当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由;
(3)设BE=x,△DEF的面积为y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?

manfen5.com 满分网 查看答案
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.

manfen5.com 满分网 查看答案
已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
manfen5.com 满分网
查看答案
锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)
(1)△ABC中边BC上高AD=______
(2)当x=______时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
manfen5.com 满分网
查看答案
如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)△ABC与△SBR是否相似,说明理由;
(2)请你探索线段TS与PA的长度之间的关系;
(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.