满分5 > 初中数学试题 >

如图,正方形ABCD的边长为4cm,点P是BC边上不与点B、C重合的任意一点,连...

如图,正方形ABCD的边长为4cm,点P是BC边上不与点B、C重合的任意一点,连接AP,过点P作PQ⊥AP交DC于点Q,设BP的长为xcm,CQ的长为ycm.
(1)点P在BC上运动的过程中y的最大值为______cm;
(2)当y=manfen5.com 满分网cm时,求x的值为______

manfen5.com 满分网
(1)不管P如何移动,都有△ABP∽△PCQ,根据比例线段可得到关于y的表达式,再根据二次函数来求出y的最大值. (2)由y的值代入函数式即可求出x的值. 【解析】 (1)∵PQ⊥AP,∠CPQ+∠APB=90度. 又∵∠BAP+∠APB=90°, ∴∠CPQ=∠BAP, ∴tan∠CPQ=tan∠BAP, 因此,点在BC上运动时始终有, ∵AB=BC=4,BP=x,CQ=y, ∴, ∴y=-(x2-4x)=(x2-4x+4)+1=-(x-2)2+1(0<x<4), ∵a=-<0, ∴y有最大值(当x=2时),y最大=1(cm); (2)由(1)知,y=-(x2-4x)当y=cm时,=-(x2-4x), 整理,得x2-4x+1=0, ∵b2-4ac=12>0, ∴x=. ∵0<2±<4, ∴当y=cm时,x的值是(2+)cm或(2-)cm.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在Rt△ABC中,∠C=90°,AC=3,BC=4,点E在直角边AC上(点E与A、C两点均不重合),点F在斜边AB上(点F与A、B两点均不重合).
(1)若EF平分Rt△ABC的周长,设AE长为x,试用含x的代数式表示△AEF的面积;
(2)是否存在线段EF将Rt△ABC的周长和面积同时平分?若存在,求出此时AE的长;若不存在,说明理由.
查看答案
如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

manfen5.com 满分网 查看答案
在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x.
(1)求y关于x的函数关系式;
(2)当AB的长等于多少时,⊙O的面积最大,并求出⊙O的最大面积.

manfen5.com 满分网 查看答案
如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.
(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.
①求证:△CQD∽△APD;
②连接PQ,设AP=x,求面积S△PCQ关于x的函数关系式;
(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.
①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;
②连接MN,求面积S△MCN关于t的函数关系式;
(3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S△PCQ等于平移所得S△MCN的最大值?说明你的理由.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.