如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;
(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,l
1,l
2,l
3,l
4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25.
(1)连接EF,证明△ABE、△FBE、△EDF、△CDF的面积相等.
(2)求h的值.
查看答案
如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1)求证:DE-BF=EF;
(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;
(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
查看答案
如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.
(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)P是MG的中点,请直接写出点P的运动路线的长.
查看答案
在矩形ABCD中,AB=a,AD=2b(a>2b>0),E是AD的中点,BF⊥EC,垂足为F,求BF的长(用含有a、b的代数式表示).
查看答案
如图1,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A,C重合),过点F分别作x轴、y轴的垂线,垂足为G,E.设四边形BCFE的面积为S
1,四边形CDGF的面积为S
2,△AFG的面积为S
3.
(1)试判断S
1,S
2的关系,并加以证明;
(2)当S
3:S
2=1:3时,求点F的坐标;
(3)如图2,在(2)的条件下,把△AEF沿对角线AC所在直线平移,得到△A′E′F′,且A′,F′两点始终在直线AC上,是否存在这样的点E′,使点E′到x轴的距离与到y轴的距离比是5:4?若存在,请求出点E′的坐标;若不存在,请说明理由.
查看答案