满分5 > 初中数学试题 >

如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3. (1)求的值...

如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3.
(1)求manfen5.com 满分网的值;
(2)求BC的长.

manfen5.com 满分网
(1)由已知条件求得AB的值,再求AD:AB即可; (2)已知DE∥BC,可证△ADE∽△ABC,可得出,把DE,AD,AB的值代入,即可求得BC的值. 【解析】 (1)∵AD=4,DB=8 ∴AB=AD+DB=4+8=12 ∴=; (2)∵DE∥BC ∴△ADE∽△ABC ∴ ∵DE=3 ∴ ∴BC=9.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC和Rt△DEF中,∠ABC=90°,AB=4,BC=6,∠DEF=90°,DE=EF=4.
(1)移动△DEF,使边DE与AB重合(如图1),再将△DEF沿AB所在直线向左平移,使点F落在AC上(如图2),求BE的长;
(2)将图2中的△DEF绕点A顺时针旋转,使点F落在BC上,连接AF(如图3).请找出图中的全等三角形,并说明它们全等的理由.(不再添加辅助线,不再标注其它字母)
manfen5.com 满分网
查看答案
如图①,在Rt△ABC中,∠BAC=90°,AB=AC=manfen5.com 满分网,D、E两点分别在AC、BC上,且DE∥AB,CD=manfen5.com 满分网.将△CDE绕点C顺时针旋转,得到△CD′E′(如图②,点D′、E′分别与点D、E对应),点E′在AB上,D′E′与AC相交于点M.
(1)求∠ACE′的度数;
(2)求证:四边形ABCD′是梯形;
(3)求△AD′M的面积.

manfen5.com 满分网 查看答案
填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°manfen5.com 满分网;在图⑤中,∠AFB与∠α的数量关系是______.请你任选其中一个结论证明.
manfen5.com 满分网
查看答案
我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到______次平移,______次旋转.小明发现△B∽△A,其相似比为______.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是______
(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.
manfen5.com 满分网
查看答案
如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.
(1)求证:四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.