如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长与CE交于点E.
(1)求证:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的长.
考点分析:
相关试题推荐
如图1在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2
),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为3
,请直接写出点F的坐标.
查看答案
如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?
查看答案
已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=
PM.(不需证明)当PC=
PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.
查看答案
如下图,在⊙O中,点P在直径AB上运动,但与A、B两点不重合,过点P作弦CE⊥AB,在
上任取一点D,直线CD与直线AB交于点F,弦DE交直线AB于点M,连接CM.
(1)如图1,当点P运动到与O点重合时,求∠FDM的度数.
(2)如图2、图3,当点P运动到与O点不重合时,求证:FM•OB=DF•MC.
查看答案
在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=
.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.
(1)求点B的坐标;
(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;
(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案