如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.
求证:(1)AE=CG;(2)AN•DN=CN•MN.
考点分析:
相关试题推荐
如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=
CD.
(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求▱ABCD的面积.
查看答案
如图,E是矩形ABCD的边DC延长线上一点,连接AE分别交BC,BD于F,G.
(1)图中有全等三角形吗?(对角线分矩形所得两个三角形除外)若有,请写出一对来;若没有,请添加一个条件(不添加辅助线和不改变图中字母),使得图中有全等三角形,并写出来;
(2)图中有相似三角形吗?设矩形ABCD的周长为20,对角线长为2
,求DE的长,使得你找出的一对相似三角形的相似比为2:3.
查看答案
阅读理【解析】
如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.
查看答案
在等边△ABC中,点D为AC上一点,连接BD,直线l与AB,BD,BC分别相交于点E,P,F,且∠BPF=60度.
(1)如图1,写出图中所有与△BPF相似的三角形,并选择其中一对给予证明;
(2)若直线l向右平移到图2,图3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由;
(3)探究:如图1,当BD满足什么条件时(其它条件不变),PF=
PE?请写出探究结果,并说明理由.
(说明:结论中不得含有未标识的字母)
查看答案
如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当
时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当
时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当
时,EP与EQ满足的数量关系式为______,其中m的取值范围是______
查看答案