(北师大版)已知:将一副三角板(Rt△ABC和Rt△DEF)如图1摆放,点E、A、D、B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE、AC相交于点M,直线DF、BC相交于点N,分别过点M、N作直线AB的垂线,垂足为G、H.
(1)当α=30°时(如图2),求证:AG=DH;
(2)当α=60°时(如图3),(1)中的结论是否成立?请写出你的结论,并说明理由;
(3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由.
考点分析:
相关试题推荐
如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE上BP,P为垂足,PE交DC于点E.
(1)△ABP和△DPE是否相似?请说明理由;
(2)设AP=x,DE=y,求y与x之间的函数关系式,并指出x的取值范围;
(3)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由;
(4)请你探索在点P的运动过程中,△BPE能否构成等腰三角形?如果能.求出AP的长;如果不能,请说明理由.
查看答案
如图,平行四边形ABCD中,∠BAD的平分线AE交BC的延长线于点E,交CD于点F,AB=5,BC=2,求CF的长.
查看答案
如图,在△ABC中,AC>BC,D是AC边上一点,连接BD.
(1)要使△CBD∽△CAB,还需要补充一个条件是______;(只要求填一个)
(2)若△CBD∽△CAB,且AD=2,BC=
,求CD的长.
查看答案
如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.
(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长;
(2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;
(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.
查看答案
在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P′在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
(1)填空:
①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(______,______);
②如图2,△ABC是边长为1cm的等边三角形,将它作旋转相似变换A(
,90°),得到△ADE,则线段BD的长为______cm;
(2)如图3,分别以锐角三角形ABC的三边AB,BC,CA为边向外作正方形ADEB,BFGC,CHIA,点O
1,O
2,O
3分别是这三个正方形的对角线交点,试分别利用△AO
1O
3与△ABI,△CIB与△CAO
2之间的关系,运用旋转相似变换的知识说明线段O
1O
3与AO
2之间的关系.
查看答案