满分5 > 初中数学试题 >

如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△AB...

如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元.
(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少?

manfen5.com 满分网
(1)可利用相似分别表示出相应的三角形的底与高,让面积相等即可 (2)把相应的总投资用含x的代数式表示出后,求出二次函数的最值即可. 【解析】 (1)设FG=x米,则AK=(80-x)米. 由△AHG∽△ABC,BC=120,AD=80,可得:=, ∴HG=120-, BE+FC=120-(120-x)=x,(2分) ∴•(120-x)•(80-x)=×x•x, 解得x=40. ∴当FG的长为40米时,种草的面积和种花的面积相等.(5分) (2)设改造后的总投资为W元. 则W=•(120-x)•(80-x)•6+×x•x•10+x(120-x)•4 =6x2-240x+28800 =6(x-20)2+26400 ∵二次项系数6>0, ∴当x=20时,W最小=26400. 答:当矩形EFGH的边FG长为20米时,空地改造的总投资最小,最小值为26400元.(8分)
复制答案
考点分析:
相关试题推荐
已知小明同学身高1.5米,经太阳光照射,在地面的影长为2米,若此时测得一塔在同一地面的影长为60米,则塔高应为    米. 查看答案
如图,铁道口栏杆的短臂长为1.2m,长臂长为8m,当短臂端点下降0.6m时,长臂端点升高    m(杆的粗细忽略不计).
manfen5.com 满分网 查看答案
吕晓同学想利用树影的长测量校园内一棵大树的高度,他在某一时刻测得一棵小树的高为1.5米,其影长为1.2米,同时,他测得这棵大树的影长为3米,则这棵大树的实际高度为    米. 查看答案
如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米.如果小明的身高为1.6米,那么路灯高地面的高度AB是    米.
manfen5.com 满分网 查看答案
如图,身高1.6m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD为2.5m,则路灯的高度AB为    m.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.