我们规定:将任意三个互不相等的数a,b,c按照从小到大的顺序排列后,把处于中间位置的数叫做这三个数的中位数.用符号mid{a,b,c}表示.例如mid{﹣1,2,1}=1.
(1)mid{,5,3}= .
(2)当x<﹣2时,求mid{1+x,1﹣x,﹣1}.
(3)若x≠0,且mid{5,5﹣2x,2x+1}=2x+1,求x的取值范围.
某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.
(1)求每辆A型车和B型车的售价各为多少万元?
(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?
如图,在平面直角坐标系xOy中,已知P(1,2).
(1)在平面直角坐标系中描出点P(保留画图痕迹);
(2)如果将点P向左平移3个单位长度,再向上平移1个单位长度得到点P',则点P'的坐标为 .
(3)点A在坐标轴上,若S△OAP=2,直接写出满足条件的点A的坐标.
某校为了解学生的课外阅读情况,对部分学生进行了调查,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制如下两幅不完整的统计图.
请你根据以上信息解答下列问题:
(1)本次调查活动采取了 调查方式,样本容量是 .
(2)图2中C的圆心角度数为 度,补全图1的频数分布直方图.
(3)该校有900名学生,估计该校学生平均每天的课外阅读时间不少于50min的人数.
完成下面的证明.
已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°.
证明:过点C作CF∥AB.
∵CF∥AB(已作),
∴∠1= .
∵∠2=∠BCD﹣∠1,
∴∠2=∠BCD﹣∠B .
∵AB∥DE,CF∥AB(已知),
∴CF∥DE
∴∠D+∠2=180°
∴∠D+∠BCD﹣∠B=180° .
解不等式组并求其整数解.