注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格, 只需按照解答题的一般要求,进行解答即可.
某校八年级学生由距博物馆 10km 的学校出发前往参观,一部分同学骑自行车先走,过了20min 后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度 的 2 倍,求骑车同学的速度.
设骑车同学的速度为 xkm / h
(Ⅰ)根据题意,利用速度、时间、路程之间的关系,用含有 x 的式子填写下表:
| 速度(千米 / 时) | 所用时间(时 ) | 所走的路程(千米) |
骑自行车 |
x |
|
10 |
乘汽车 |
|
|
10 |
(Ⅱ)列出方程,并求出问题的解.
如图,△ABC 在平面直角坐标系中,点 A,B,C 的坐标分别为 A(-2,4),B(4,2),C(2,-1).
(Ⅰ)请在平面直角坐标系内,画出△ABC 关于 x 轴的对称图形△A1B1C1,其中,点 A,B,C 的对应点分别为A1,B1,C1;
(Ⅱ)请写出点C(2,-1)关于直线m(直线m上格点的横坐标都为-1)对称的点C2的坐标.
如图,AD 是 ABC 的高,BE 平分 ABC 交 AD 于点 E .若 C 76 ,BED 64 .求BAC 的度数.
(Ⅰ)计算:;
(Ⅱ)先化简,再求值:,其中 x 3 .
(Ⅰ)分解因式:.
(Ⅱ)先化简,再求值: 3x 1 3x 1 x 3 9 x 6 .其中 x .
等边△ABC 的边长为 4,AD 是 BC 边上的中线,F 是边 AD 上的动点,E 是边 AC 上的点, 当 AE=2,且 EF+CF 取得最小值时.
(Ⅰ)能否求出∠ECF 的度数?_____(用“能”或“否”填空);
(Ⅱ)如果能,请你在图中作出点 F(保留作图痕迹,不写证明).并直接写出∠ECF 的度 数;如果不能,请说明理由.