满分5 > 初中数学试题 >

如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC (1)填空:如...

如图,在ABC中,BABCD在边CB上,且DBDAAC

1)填空:如图1,∠B     °,∠C     °

2)如图2,若M为线段BC上的点,过MMHAD,交AD的延长线于点H,分别交直线ABAC与点NE

①求证:ANE是等腰三角形;

②线段BNCECD之间的数量关系是     

 

(1)36;72;(2)①见解析;②CD=BN+CE,理由见解析. 【解析】 (1)BA=BC,且DB=DA=AC可得∠C=∠ADC=∠BAC=2∠B,∠DAC=∠B,在△ADC中由三角形内角和可求得∠B,∠C; (2)①由(1)可知∠BAD=∠CAD=36°,且∠AHN=∠AHE=90°,可求得∠ANH=∠AEH=54°,可得AN=AE; ②由①知AN=AE,借助已知利用线段的和差可得CD=BN+CE. 【解析】 (1)∵BA=BC, ∴∠BCA=∠BAC, ∵DA=DB, ∴∠BAD=∠B, ∵AD=AC, ∴∠ADC=∠C=∠BAC=2∠B, ∴∠DAC=∠B, ∵∠DAC+∠ADC+∠C=180°, ∴2∠B+2∠B+∠B=180°, ∴∠B=36°,∠C=2∠B=72°, 故答案为:36;72; (2)①在△ADB中,∵DB=DA,∠B=36°, ∴∠BAD=36°, 在△ACD中,∵AD=AC, ∴∠ACD=∠ADC=72°, ∴∠CAD=36°, ∴∠BAD=∠CAD=36°, ∵MH⊥AD, ∴∠AHN=∠AHE=90°, ∴∠AEN=∠ANE=54°, 即△ANE是等腰三角形; ②CD=BN+CE. 证明:由①知AN=AE, 又∵BA=BC,DB=AC, ∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD, ∴BN+CE=BC﹣BD=CD, 即CD=BN+CE
复制答案
考点分析:
相关试题推荐

我们知道,假分数可以化为整数与真分数的和的形式.例如:.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为假分式;当分子的次数小于分母的次数时,我们称之为真分式”.例如:像这样的分式是假分式;像这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:

.

1)将分式化为整式与真分式的和的形式;

2)如果分式的值为整数,求x的整数值.

 

查看答案

如图,已知两点PQ在锐角∠AOB内,分别在OAOB上求作点MN,使PMMNNQ最短.(要求:尺规作图,保留作图痕迹,不写作法)

 

查看答案

如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B25m,结果他在水中实际划了65m,求该河流的宽度.

 

查看答案

如图为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠因此他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5 km且小明每千米享受的优惠金额是小伟的2求小明和小伟从家到学校乘地铁的里程分别是多少千米.

 

查看答案

先化简,再求值:已知,求代数式的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.