已知数列{}满足。
(1)求证:数列{}是等比数列。
(2)求的表达式。
在三角形ABC中,角A,B,C对应边分别为a,b,c。求证:。
已知三个实数a、b、c成等差数列,且它们的和为12,又a+2、b+2、c+5成等比数列,求a、b、c的值。
已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于两点,求实数的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程.
(2)从圆外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;
(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.