满分5 > 高中数学试题 >

如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°.E为线段AB的中...

如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°.E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.
(Ⅰ)求证:BF∥平面A′DE;
(Ⅱ)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.

manfen5.com 满分网
(Ⅰ)欲证BF∥平面A'DE,只需在平面A'DE中找到一条线平行于BF即可;而取A′D的中点G,并连接GF、GE,易证四边形BEGF为平行四边形,则BF∥EG,即问题得证. (Ⅱ)欲求直线FM与平面A′DE所成角的余弦值,需先找到直线FM与平面A′DE所成的角;而连接A′M,CE,由平面A′DE⊥平面BCD易证CE⊥A′M,且由勾股定理的逆定理可证CE⊥DE;再取A′E的中点N,连线NM、NF,则NF⊥平面A′DE,即∠FMN为直线FM与平面A′DE所成的角;最后在Rt△FMN中,易得cos∠FMN的值. (Ⅰ)证明:取A′D的中点G, 连接GF,GE,由条件易知 FG∥CD,FG=CD. BE∥CD,BE=CD. 所以FG∥BE,FG=BE. 故所以BF∥EG. 又EG⊂平面A'DE,BF⊄平面A'DE 所以BF∥平面A'DE. (Ⅱ)【解析】 在平行四边形ABCD中,设BC=a, 则AB=CD=2a,AD=AE=EB=a, 连接A′M,CE 因为∠ABC=120° 在△BCE中,可得CE=a, 在△ADE中,可得DE=a, 在△CDE中,因为CD2=CE2+DE2,所以CE⊥DE, 在正三角形A′DE中,M为DE中点,所以A′M⊥DE. 由平面A′DE⊥平面BCD, 可知A′M⊥平面BCD,A′M⊥CE. 取A′E的中点N,连线NM、NF, 所以NF⊥DE,NF⊥A′M. 因为DE交A′M于M, 所以NF⊥平面A′DE, 则∠FMN为直线FM与平面A′DE所成的角. 在Rt△FMN中,NF=a,MN=a,FM=a, 则cos∠FMN=. 所以直线FM与平面A′DE所成角的余弦值为.
复制答案
考点分析:
相关试题推荐
设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0.
(Ⅰ)若S5=5,求S6及a1
(Ⅱ)求d的取值范围.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足manfen5.com 满分网
(Ⅰ)求角C的大小;
(Ⅱ)求sinA+sinB的最大值.
查看答案
在平行四边形ABCD中,O是AC与BD的交点,P、Q、M、N分别是线段OA、OB、OC、OD的中点,在APMC中任取一点记为E,在B、Q、N、D中任取一点记为F,设G为满足向量manfen5.com 满分网的点,则在上述的点G组成的集合中的点,落在平行四边形ABCD外(不含边界)的概率为    
manfen5.com 满分网 查看答案
某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x的最小值    查看答案
若正实数x,y满足2x+y+6=xy,则xy的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.