满分5 > 高中数学试题 >

已知双曲线的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是...

已知双曲线manfen5.com 满分网的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.
(1)求直线A1P与A2Q交点的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值.
(1)先确定直线A1P与A2Q的方程;再联立方程组解之(相乘处理);最后利用点P(x1,y1)在双曲线上,消去参数x1、y1(整体消元)求出轨迹E的方程; (2)先由l1⊥l2设出两直线方程;再分别与椭圆方程联立,根据只有一个交点(即△=0)得出k、h的两个方程;最后解出h的值. 【解析】 (1)由A1,A2为双曲线的左右顶点知,, 则,, 两式相乘得, 因为点P(x1,y1)在双曲线上,所以,即, 所以,即, 故直线A1P与A2Q交点的轨迹E的方程为.(x≠,x≠0) (2)设l1:y=kx+h(k>0),则由l1⊥l2知,. 将l1:y=kx+h代入得, 即(1+2k2)x2+4khx+2h2-2=0, 若l1与椭圆相切,则△=16k2h2-4(1+2k2)(2h2-2)=0,即1+2k2=h2; 同理若l2与椭圆相切,则. 由l1与l2与轨迹E都只有一个交点包含以下四种情况: [1]直线l1与l2都与椭圆相切,即1+2k2=h2,且,消去h2得,即k2=1, 从而h2=1+2k2=3,即; [2]直线l1过点,而l2与椭圆相切,此时,,解得; [3]直线l2过点,而l1与椭圆相切,此时,1+2k2=h2,解得; [4]直线l1过点,而直线l2过点,此时,,∴. 综上所述,h的值为.
复制答案
考点分析:
相关试题推荐
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
查看答案
如图,manfen5.com 满分网是半径为a的半圆,AC为直径,点E为manfen5.com 满分网的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足manfen5.com 满分网manfen5.com 满分网
(1)证明:EB⊥FD;
(2)已知点Q,R为线段FE,FB上的点,manfen5.com 满分网manfen5.com 满分网,求平面BED与平面RQD所成二面角的正弦值.

manfen5.com 满分网 查看答案
某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.
(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.

manfen5.com 满分网 查看答案
已知函数f(x)=Asin(3x+ρ)(A>0,x∈(-∞,+∞),0<ρ<π)在manfen5.com 满分网时取得最大值4.
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若manfen5.com 满分网,求sinα.
查看答案
在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.