满分5 > 高中数学试题 >

如图,椭圆=1(a>b>0)的一个焦点是F(1,0),O为坐标原点. (Ⅰ)已知...

如图,椭圆manfen5.com 满分网=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有|OA|2+|OB|2<|AB|2,求a的取值范围.

manfen5.com 满分网
(Ⅰ)设M,N为短轴的两个三等分点,因为△MNF为正三角形,所以,由此能够推导出椭圆方程. (Ⅱ)设A(x1,y1),B(x2,y2). (ⅰ)当直线AB与x轴重合时,由题意知恒有|OA|2+|OB|2<|AB|2. (ⅱ)当直线AB不与x轴重合时,设直线AB的方程为:x=my+1,代入, 由题设条件能够推导出=(x1,y1)•(x2,y2)=x1x2+y1y2<0恒成立.由此入手能够推导出a的取值范围. 【解析】 (Ⅰ)设M,N为短轴的两个三等分点, 因为△MNF为正三角形,所以, 即1=,解得a2=b2+1=4,因此,椭圆方程为 (Ⅱ)设A(x1,y1),B(x2,y2). (ⅰ)当直线AB与x轴重合时, |OA|2+|OB|2=2a2,|AB|2=4a2(a2>1), 因此,恒有|OA|2+|OB|2<|AB|2. (ⅱ)当直线AB不与x轴重合时, 设直线AB的方程为:, 整理得(a2+b2m2)y2+2b2my+b2-a2b2=0, 所以 因为恒有|OA|2+|OB|2<|AB|2,所以∠AOB恒为钝角. 即恒成立. x1x2+y1y2=(my1+1)(my2+1)+y1y2=(m2+1)y1y2+m(y1+y2)+1 = = 又a2+b2m2>0,所以-m2a2b2+b2-a2b2+a2<0对m∈R恒成立, 即a2b2m2>a2-a2b2+b2对m∈R恒成立. 当m∈R时,a2b2m2最小值为0,所以a2-a2b2+b2<0. a2<a2b2-b2,a2<(a2-1)b2=b4, 因为a>0,b>0,所以a<b2,即a2-a-1>0, 解得a>或a<(舍去),即a>, 综合(i)(ii),a的取值范围为(,+∞).
复制答案
考点分析:
相关试题推荐
某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为manfen5.com 满分网,科目B每次考试成绩合格的概率均为manfen5.com 满分网.假设各次考试成绩合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(Ⅱ)求函数f(x)在区间(a-1,a)内的极值.
查看答案
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=manfen5.com 满分网,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为manfen5.com 满分网?若存在,求出manfen5.com 满分网的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求tanA的值;
(Ⅱ)求函数manfen5.com 满分网的值域.
查看答案
设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b,ab、manfen5.com 满分网∈P(除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集manfen5.com 满分网也是数域.有下列命题:
①整数集是数域;②若有理数集Q⊆M,则数集M必为数域;
③数域必为无限集;④存在无穷多个数域.
其中正确的命题的序号是    .(把你认为正确的命题的序号填填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.