满分5 > 高中数学试题 >

甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少...

甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.
(1)甲、乙两人同时参加A岗位服务,则另外三个人在B、C、D三个位置进行全排列,所有的事件数是从5个人中选2个作为一组,同其他3人共4个元素在四个位置进行排列. (2)总事件数同第一问一样,甲、乙两人不在同一个岗位服务的对立事件是甲、乙两人同时参加同一岗位服务,即甲、乙两人作为一个元素同其他三个元素进行全排列. (3)五名志愿者中参加A岗位服务的人数ξ可能的取值是1、2,ξ=2”是指有两人同时参加A岗位服务,同第一问类似做出结果.写出分布列. 【解析】 (Ⅰ)记甲、乙两人同时参加A岗位服务为事件EA, 总事件数是从5个人中选2个作为一组,同其他3人共4个元素在四个位置进行排列C52A44. 满足条件的事件数是A33, 那么, 即甲、乙两人同时参加A岗位服务的概率是. (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E, 满足条件的事件数是A44, 那么, ∴甲、乙两人不在同一岗位服务的概率是. (Ⅲ)随机变量ξ可能取的值为1,2.事件“ξ=2”是指有两人同时参加A岗位服务, 则. ∴,ξ的分布列是  ξ  1  2  P    
复制答案
考点分析:
相关试题推荐
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)求二面角B-AP-C的大小;
(Ⅲ)求点C到平面APB的距离.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的取值范围.
查看答案
某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,manfen5.com 满分网T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为    ;第2009棵树种植点的坐标应为    查看答案
已知函数f(x)=x2-cosx,对于[-manfen5.com 满分网manfen5.com 满分网]上的任意x1,x2,有如下条件:
①x1>x2;②x12>x22;③|x1|>x2
其中能使f(x1)>f(x2)恒成立的条件序号是     查看答案
manfen5.com 满分网如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=    manfen5.com 满分网=    .(用数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.