满分5 > 高中数学试题 >

已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为...

已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.
(Ⅰ)由题意得直线BD的方程,根据四边形ABCD为菱形,判断出AC⊥BD.于是可设出直线AC的方程与椭圆的方程联立,根据判别式大于0求得n的范围,设A,C两点坐标分别为(x1,y1),(x2,y2),根据韦达定理求得x1+x2和x1x2,代入直线方程可表示出y1+y2,进而可得AC中点的坐标,把中点代入直线y=x+1求得n,进而可得直线AC的方程. (Ⅱ)根据四边形ABCD为菱形判断出∠ABC=60°且|AB|=|BC|=|CA|.进而可得菱形ABCD的面积根据n的范围确定面积的最大值. 【解析】 (Ⅰ)由题意得直线BD的方程为y=x+1. 因为四边形ABCD为菱形,所以AC⊥BD. 于是可设直线AC的方程为y=-x+n. 由得4x2-6nx+3n2-4=0. 因为A,C在椭圆上, 所以△=-12n2+64>0,解得. 设A,C两点坐标分别为(x1,y1),(x2,y2), 则,,y1=-x1+n,y2=-x2+n. 所以. 所以AC的中点坐标为. 由四边形ABCD为菱形可知,点在直线y=x+1上, 所以,解得n=-2. 所以直线AC的方程为y=-x-2,即x+y+2=0. (Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°, 所以|AB|=|BC|=|CA|. 所以菱形ABCD的面积. 由(Ⅰ)可得, 所以. 所以当n=0时,菱形ABCD的面积取得最大值.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,求导函数f'(x),并确定f(x)的单调区间.
查看答案
甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.
查看答案
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)求二面角B-AP-C的大小;
(Ⅲ)求点C到平面APB的距离.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的取值范围.
查看答案
某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当k≥2时,manfen5.com 满分网T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为    ;第2009棵树种植点的坐标应为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.