满分5 > 高中数学试题 >

对于每项均是正整数的数列A:a1,a2,…,an,定义变换T1,T1将数列A变换...

对于每项均是正整数的数列A:a1,a2,…,an,定义变换T1,T1将数列A变换成数列T1(A):n,a1-1,a2-1,…,an-1.
对于每项均是非负整数的数列B:b1,b2,…,bm,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B);
又定义S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2.设A是每项均为正整数的有穷数列,令Ak+1=T2(T1(Ak))(k=0,1,2,…).
(Ⅰ)如果数列A为5,3,2,写出数列A1,A2
(Ⅱ)对于每项均是正整数的有穷数列A,证明S(T1(A))=S(A);
(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列A,存在正整数K,当k≥K时,S(Ak+1)=S(Ak).
(Ⅰ)由A:5,3,2,求得T1(A)再通过Ak+1=T2(T1(Ak))求解. (Ⅱ)设有穷数列A求得T1(A)再求得S(T1(A)),由S(A)=2(a1+2a2++nan)+a12+a22++an2,两者作差比较. (Ⅲ)设A是每项均为非负整数的数列a1,a2,,an.在存在1≤i<j≤n,有ai≤aj时条件下,交换数列A的第i项与第j项得到数列B,在存在1≤m<n,使得am+1=am+2═an=0时条件下,若记数列a1,a2,…,am为C,Ak+1=T2(T1(Ak))s(Ak+1)≤S(T1(Ak)).由S(T1(Ak))=S(Ak),得到S(Ak+1)≤S(Ak).S(Ak)是大于2的整数,所以经过有限步后,必有S(Ak)=S(Ak+1)=S(Ak+2)=0. 【解析】 (Ⅰ)【解析】 A:5,3,2,T1(A):3,4,2,1,A1=T2(T1(A)):4,3,2,1;T1(A1):4,3,2,1,0,A2=T2(T1(A1)):4,3,2,1. (Ⅱ)证明:设每项均是正整数的有穷数列A为a1,a2,,an, 则T1(A)为n,a1-1,a2-1,,an-1, 从而S(T1(A))=2[n+2(a1-1)+3(a2-1)++(n+1)(an-1)]+n2+(a1-1)2+(a2-1)2++(an-1)2. 又S(A)=2(a1+2a2++nan)+a12+a22++an2, 所以S(T1(A))-S(A)=2[n-2-3--(n+1)]+2(a1+a2++an)+n2-2(a1+a2++an)+n=-n(n+1)+n2+n=0, 故S(T1(A))=S(A). (Ⅲ)证明:设A是每项均为非负整数的数列a1,a2,,an. 当存在1≤i<j≤n,使得ai≤aj时,交换数列A的第i项与第j项得到数列B, 则S(B)-S(A)=2(iaj+jai-iai-jaj)=2(i-j)(aj-ai)≤0. 当存在1≤m<n,使得am+1=am+2═an=0时,若记数列a1,a2,,am为C, 则S(C)=S(A). 所以S(T2(A))≤S(A). 从而对于任意给定的数列A,由Ak+1=T2(T1(Ak))(k=0,1,2,) 可知S(Ak+1)≤S(T1(Ak)). 又由(Ⅱ)可知S(T1(Ak))=S(Ak),所以S(Ak+1)≤S(Ak). 即对于k∈N,要么有S(Ak+1)=S(Ak),要么有S(Ak+1)≤S(Ak)-1. 因为S(Ak)是大于2的整数,所以经过有限步后,必有S(Ak)=S(Ak+1)=S(Ak+2)=0. 即存在正整数K,当k≥K时,S(Ak+1)=S(A)
复制答案
考点分析:
相关试题推荐
已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.
查看答案
已知函数manfen5.com 满分网,求导函数f'(x),并确定f(x)的单调区间.
查看答案
甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.
查看答案
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)求二面角B-AP-C的大小;
(Ⅲ)求点C到平面APB的距离.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.