满分5 > 高中数学试题 >

如图,在直三棱柱ABC-A1B1C1中,AA1=2,AB=1,∠ABC=90°;...

如图,在直三棱柱ABC-A1B1C1中,AA1=2,AB=1,∠ABC=90°;点D、E分别在BB1,A1D上,且B1E⊥A1D,四棱锥C-ABDA1与直三棱柱的体积之比为3:5.
(1)求异面直线DE与B1C1的距离;
(2)若BC=manfen5.com 满分网,求二面角A1-DC1-B1的平面角的正切值.

manfen5.com 满分网
(1)因B1C1⊥A1B1,且B1C1⊥BB1,进而可推断B1C1⊥面A1ABB1,进而推断B1E是异面直线B1C1与DE的公垂线,设BD的长度为x,则四棱椎C-ABDA1的体积V1为,里用体积公式表示出V1,表示出四棱椎C-ABDA1的体积V1,同时直三棱柱ABC-A1B1C1的体积V2,根据V1:V2=3:5求得x,从而求得B1D,直角三角形A1B1D中利用勾股定理求得A1D进而利用三角形面积公式求得B1E. (2)过B1作B1F⊥C1D,垂足为F,连接A1F,因A1B1⊥B1C1,A1B1⊥B1D,故A1B1⊥面B1DC1.由三垂线定理知C1D⊥A1F,故∠A1FB1为所求二面角的平面角,先利用勾股定理求得C11D,进而求得BF,进而可求tan求得∠A1FB1. 【解析】 (Ⅰ)因B1C1⊥A1B1,且B1C1⊥BB1,故B1C1⊥面A1ABB1, 从而B1C1⊥B1E,又B1E⊥DE,故B1E是异面直线B1C1与DE的公垂线 设BD的长度为x,则四棱椎C-ABDA1的体积V1为 而直三棱柱ABC-A1B1C1的体积V2为 由已知条件V1:V2=3:5,故,解之得 从而 在直角三角形A1B1D中,, 又因, 故 (Ⅱ)如图1,过B1作B1F⊥C1D,垂足为F,连接A1F,因A1B1⊥B1C1,A1B1⊥B1D,故A1B1⊥面B1DC1. 由三垂线定理知C1D⊥A1F,故∠A1FB1为所求二面角的平面角 在直角△C1B1D中,, 又因, 故,所以.
复制答案
考点分析:
相关试题推荐
某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为manfen5.com 满分网,且各车是否发生事故相互独立,求一年内该单位在此保险中:
(1)获赔的概率;
(2)获赔金额ξ的分别列与期望.
查看答案
设f(x)=manfen5.com 满分网
(1)求f(x)的最大值及最小正周期;
(2)若锐角α满足manfen5.com 满分网,求tanmanfen5.com 满分网的值.
查看答案
过双曲线x2-y2=4的右焦点F作倾斜角为105的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为    查看答案
某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有     种.(以数字作答) 查看答案
设{an}为公比q>1的等比数列,若a2004和a2005是方程4x2-8x+3=0的两根,则a2006+a2007=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.