满分5 > 高中数学试题 >

已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,...

已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.
(1)因为x=1时函数取得极值得f(x)=-3-c求出b,然后令导函数=0求出a即可; (2)解出导函数为0时x的值讨论x的取值范围时导函数的正负决定f(x)的单调区间; (3)不等式f(x)≥-2c2恒成立即f(x)的极小值≥-2c2,求出c的解集即可. 【解析】 (1)由题意知f(1)=-3-c,因此b-c=-3-c,从而b=-3 又对f(x)求导得=x3(4alnx+a+4b) 由题意f'(1)=0,因此a+4b=0,解得a=12 (2)由(I)知f'(x)=48x3lnx(x>0),令f'(x)=0,解得x=1 当0<x<1时,f'(x)<0,此时f(x)为减函数; 当x>1时,f'(x)>0,此时f(x)为增函数 因此f(x)的单调递减区间为(0,1),而f(x)的单调递增区间为(1,+∞) (3)由(II)知,f(x)在x=1处取得极小值f(1)=-3-c,此极小值也是最小值, 要使f(x)≥-2c2(x>0)恒成立,只需-3-c≥-2c2 即2c2-c-3≥0,从而(2c-3)(c+1)≥0,解得或c≤-1 所以c的取值范围为(-∞,-1]∪
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,AA1=2,AB=1,∠ABC=90°;点D、E分别在BB1,A1D上,且B1E⊥A1D,四棱锥C-ABDA1与直三棱柱的体积之比为3:5.
(1)求异面直线DE与B1C1的距离;
(2)若BC=manfen5.com 满分网,求二面角A1-DC1-B1的平面角的正切值.

manfen5.com 满分网 查看答案
某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为manfen5.com 满分网,且各车是否发生事故相互独立,求一年内该单位在此保险中:
(1)获赔的概率;
(2)获赔金额ξ的分别列与期望.
查看答案
设f(x)=manfen5.com 满分网
(1)求f(x)的最大值及最小正周期;
(2)若锐角α满足manfen5.com 满分网,求tanmanfen5.com 满分网的值.
查看答案
过双曲线x2-y2=4的右焦点F作倾斜角为105的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为    查看答案
某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有     种.(以数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.