满分5 > 高中数学试题 >

如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=. 等边三角...

如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=manfen5.com 满分网
等边三角形ADB以AB为轴运动.
(Ⅰ)当平面ADB⊥平面ABC时,求CD;
(Ⅱ)当△ADB转动时,是否总有AB⊥CD?证明你的结论.

manfen5.com 满分网
(Ⅰ)取出AB中点E,连接DE,CE,由等边三角形ADB可得出DE⊥AB,又平面ADB⊥平面ABC,故DE⊥平面ABC,在Rt△DEC中用勾股定理求出CD. (Ⅱ)总有AB⊥CD,当D∈面ABC内时,显然有AB⊥CD,当D在而ABC外时,可证得AB⊥平面CDE,定有AB⊥CD. 【解析】 (Ⅰ)取AB的中点E,连接DE,CE, 因为ADB是等边三角形,所以DE⊥AB. 当平面ADB⊥平面ABC时, 因为平面ADB∩平面ABC=AB, 所以DE⊥平面ABC, 可知DE⊥CE 由已知可得,在Rt△DEC中,. (Ⅱ)当△ADB以AB为轴转动时,总有AB⊥CD. 证明:(ⅰ)当D在平面ABC内时,因为AC=BC,AD=BD, 所以C,D都在线段AB的垂直平分线上,即AB⊥CD. (ⅱ)当D不在平面ABC内时,由(Ⅰ)知AB⊥DE.又因AC=BC,所以AB⊥CE. 又DE,CE为相交直线,所以AB⊥平面CDE,由CD⊂平面CDE,得AB⊥CD. 综上所述,总有AB⊥CD.
复制答案
考点分析:
相关试题推荐
如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.

manfen5.com 满分网 查看答案
已知{an}是等差数列,a4+a6=6,其前5项和S5=10,则其公差d=    查看答案
i是虚数单位,i+2i2+3i3+…+8i8=    .(用a+bi的形式表示,a,b∈R) 查看答案
设函数f(x)=(x+1)(x+a)为偶函数,则a=    查看答案
已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.