满分5 > 高中数学试题 >

若函数f(x)对一切x、y都有f(x+y)=f(x)+f(y), (1)试判断f...

若函数f(x)对一切x、y都有f(x+y)=f(x)+f(y),
(1)试判断f(x)的奇偶性;
(2)若f(-3)=a,用a表示f(12).
(1)判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系,∴令y=-x,有f(0)=f(x)+f(-x),故问题转化为求f(0)即可,可对x、y都赋值为0; (2)由于知晓f(-3)=a故解本题关键是找出f(12)与f(-3)之间的关系,注意用(1)的结论. 【解析】 (1)显然f(x)的定义域是R,关于原点对称. 又∵函数对一切x、y都有f(x+y)=f(x)+f(y), ∴令x=y=0,得f(0)=2f(0),∴f(0)=0. 再令y=-x,得f(0)=f(x)+f(-x), ∴f(-x)=-f(x), ∴f(x)为奇函数. (2)∵f(-3)=a且f(x)为奇函数, ∴f(3)=-f(-3)=-a. 又∵f(x+y)=f(x)+f(y),x、y∈R, ∴f(12)=f(6+6)=f(6)+f(6)=2f(6)=2f(3+3)=4f(3)=-4a. 故f(12)=-4a.
复制答案
考点分析:
相关试题推荐
判断下列各函数的奇偶性:
(1)manfen5.com 满分网
(2)manfen5.com 满分网
(3)f(x)=manfen5.com 满分网
查看答案
已知f(x)是R上的奇函数,且当x∈(0,+∞)时,manfen5.com 满分网,则f(x)的解析式为     查看答案
已知偶函数f(x)在(-∞,0)上单调递增,对于任意x1<0,x2>0,若|x1|<|x2|,则有( )
A.f(-x1)>f(-x2
B.f(-x1)<f(-x2
C.-f(-x1)>f(-x2
D.-f(-x1)<f(-x2
查看答案
已知函数y=x2+(2m+1)x+m2-1(m为实数)
(1)m是什么数值时,y的极值是0?
(2)求证:不论m是什么数值,函数图象(即抛物线)的顶点都在同一条直线L1上.
查看答案
已知:α,β为锐角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0.求证:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.