满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=...

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=manfen5.com 满分网,点E是棱PB的中点.
(1)求直线AD与平面PBC的距离;
(2)若AD=manfen5.com 满分网,求二面角A-EC-D的平面角的余弦值.

manfen5.com 满分网
(1)先根据AD∥BC,推断出AD∥平面PBC,进而可知直线AD与平面PBC的距离为点A到平面PBC的距离,根据PA⊥底面ABCD,判断出PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,进而可知AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,进而可推断出AE之长即为直线AD与平面PBC的距离.Rt△PAB中,根据PA和AB求得AE. (2)过点D作DF⊥CE,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而求得DE在Rt△CBE中,利用勾股定理求得CE,进而可知CE=CD推断出△CDE为等边三角形,求得DF,因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG平行且等于AE的一半,从而求得FG,且G点为AC的中点,连接DG,则在Rt△ADC中,求得DG,最后利用余弦定理求得答案. 【解析】 (1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离, 因PA⊥底面ABCD,故PA⊥AB,知△PAB为等腰直角三角形, 又点E是棱PB的中点,故AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影, 由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC, 故AE之长即为直线AD与平面PBC的距离, 在Rt△PAB中,PA=AB=, 所以AE=PB== (2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角. 由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB, 故AD⊥AE,从而DE== 在Rt△CBE中,CE==,由CD=, 所以△CDE为等边三角形,故F为CE的中点,且DF=CD•sin= 因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.且FG=AE, 从而FG=,且G点为AC的中点,连接DG,则在Rt△ADC中,DG==, 所以cos∠DFG==
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.
查看答案
在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:
(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;
(Ⅱ)甲、乙两单位的演出序号不相邻的概率.
查看答案
设函数f(x)=cos(x+manfen5.com 满分网π)+2manfen5.com 满分网,x∈R.
(1)求f(x)的值域;
(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=manfen5.com 满分网,求a的值.
查看答案
已知函数f(x)满足:manfen5.com 满分网,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2010)=    查看答案
已知以F为焦点的抛物线y2=4x上的两点A、B满足manfen5.com 满分网,则弦AB的中点到准线的距离为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.