满分5 > 高中数学试题 >

某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为a的四个等腰三角形,及其...

某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为a的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )
manfen5.com 满分网
A.2sinα-2cosα+2
B.sinα-manfen5.com 满分网cosα+3
C.3sinα-manfen5.com 满分网cosα+1
D.2sinα-cosα+1
根据正弦定理可先求出4个三角形的面积,再由三角面积公式可求出正方形的边长进而得到面积,最后得到答案. 【解析】 由正弦定理可得4个等腰三角形的面积和为:4××1×1×sinα=2sinα 由余弦定理可得正方形边长为: 故正方形面积为:2-2cosα 所以所求八边形的面积为:2sinα-2cosα+2 故选A.
复制答案
考点分析:
相关试题推荐
已知双曲线的中心在原点,右顶点为A(1,0)点P、Q在双曲线的右支上,支M(m,0)到直线AP的距离为1
(Ⅰ)若直线AP的斜率为k,且manfen5.com 满分网,求实数m的取值范围;
(Ⅱ)当manfen5.com 满分网时,△APQ的内心恰好是点M,求此双曲线的方程.

manfen5.com 满分网 查看答案
已知a为实数,f(x)=(x2-4)(x-a).
(1)求导数f′(x).
(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值.
(3)若f(x)在(-∞,-2)和[2,+∞]上都是递增的,求a的取值范围.
查看答案
某地区有5个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.
(1)求5个工厂均选择星期日停电的概率;
(2)求至少有两个工厂选择同一天停电的概率.
查看答案
manfen5.com 满分网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=manfen5.com 满分网,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,且manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网,求bc的最大值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.