满分5 > 高中数学试题 >

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港...

某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(Ⅰ)设相遇时小艇的航行距离为S海里,根据余弦定理可得S关于t的表达式,进而可知当t=时,S有最小值为10,进而求得此时的速度v. (Ⅱ)设小艇与轮船在B处相遇.根据余弦定理可得v关于t的表达式,再根据t的范围及二次函数的单调性求得v的最小值及此时t的值. 【解析】 (Ⅰ)设相遇时小艇的航行距离为S海里, 则S=== 故当t=时,S有最小值为10,此时v==30 即小艇以30海里/小时的速度航行,相遇时小艇的航行距离最小. (Ⅱ)设小艇与轮船在B处相遇. 由题意可知:(vt)2=202-(30t)2-2•20•30t•cos(90°-30°) 化简得= 由于0<t≤,即 所以当时,v取得最小值10 即小艇航行速度的最小值为10海里/小时.
复制答案
考点分析:
相关试题推荐
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶.假设该小船沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
查看答案
△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网manfen5.com 满分网
(Ⅱ)若c-b=1,求a的值.
查看答案
设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且manfen5.com 满分网
(Ⅰ)求角A的值;
(Ⅱ)若manfen5.com 满分网,求b,c(其中b<c).
查看答案
△ABC中,角A,B,C所对的边分别为a,b,c,若a=manfen5.com 满分网,b=2,sinB+cosB=manfen5.com 满分网,则角A的大小为    查看答案
在△ABC中,D为BC边上一点,BC=3BD,AD=manfen5.com 满分网,∠ADB=135°.若AC=manfen5.com 满分网AB,则BD=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.