某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为
.甲、乙、丙三位同学每人购买了一瓶该饮料.
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;
(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.
考点分析:
相关试题推荐
某学校举行知识竞赛,第一轮选拔共设有A,B,C,D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A,B,C,D分别加1分,2分,3分,6分,答错任意题减2分;
②每答一题,计分器显示累计分数,当累积分数小于8分时,答题结束,淘汰出局;当累积分数大于或等于14分时,答题结束,进入下一轮;答完四题累计分数不足14分时,答题结束淘汰出局;
③每位参加者按A,B,C,D顺序作答,直至答题结束.
假设甲同学对问题A,B,C,D回答正确的概率依次为
,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题的个数,求ξ的分布列和数学期望Eξ.
查看答案
如图,由M到N的电路中有4个元件,分别标为T
1,T
2,T
3,T
4,电源能通过T
1,T
2,T
3的概率都是P,电源能通过T
4的概率是0.9,电源能否通过各元件相互独立.已知T
1,T
2,T
3中至少有一个能通过电流的概率为0.999.
(Ⅰ)求P;
(Ⅱ)求电流能在M与N之间通过的概率.
查看答案
投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.
(I)求投到该杂志的1篇稿件被录用的概率;
(II)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.
查看答案
某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止.令ξ表示走出迷宫所需的时间.
(1)求ξ的分布列;
(2)求ξ的数学期望.
查看答案
如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.
(Ⅰ)求直方图中x的值.
(Ⅱ)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.
查看答案