满分5 > 高中数学试题 >

如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2...

如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0),M是线段EF的中点.
(1)求证:AC⊥BF;
(2)若二面角F-BD-A的大小为60°,求a的值;
(3)令a=1,设点P为一动点,若点P从M出发,沿棱按照M→E→C的路线运动到点C,求这一过程中形成的三棱锥P-BFD的体积的最小值.

manfen5.com 满分网
(1)建立空间直角坐标系,求出,即可证明AC⊥BF; (2)求出平面ABD的法向量,利用及二面角F-BD-A的大小为60°,求a的值; (3)解1a=1,设AC与BD交于O,则OF∥CM,所以CM∥平面FBD,当P点在M或C时,直接求出三棱锥P-BFD的体积的最小. 解2,求出,利用公式,求解即可. 【解析】 建立空间坐标系, (1) , 所以AC⊥BF.(5分) (2)平面ABD的法向量, 平面FBD的法向量 (3)解1设AC与BD交于O,则OF∥CM,所以CM∥平面FBD, 当P点在M或C时,三棱锥P-BFD的体积的最小. (14分) 解2设AC与BD交于O,则OF∥CM,所以CM∥平面FBD, 当P点在M或C时,三棱锥P-BFD的体积的最小. , 平面FBD的法向量 点C到平面FBD的距离.(14分)
复制答案
考点分析:
相关试题推荐
若椭圆C1manfen5.com 满分网的离心率等于manfen5.com 满分网,抛物线C2:x2=2py(p>0)的焦点在椭圆的顶点上.
(1)求抛物线C2的方程;
(2)求过点M(-1,0)的直线l与抛物线C2交E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
查看答案
为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右图所示;由于不慎将部分数据丢失,但知道前4组的频数从左到右依次是等比数列{an}的前四项,后6组的频数从左到右依次是等差数列{bn}的前六项.
(1)求数列{an}和{bn}的通项公式;
(2)求视力不小于5.0的学生人数;
(3)设manfen5.com 满分网,求数列{cn}的通项公式.

manfen5.com 满分网 查看答案
化简f(x)=cos(π+2x)+cos(π-2x)+2(x∈R,k∈Z),并求函数f(x)的值域和最小正周期.
查看答案
已知圆的极坐标方程为ρ=2cosθ,则该圆的圆心到直线ρsinθ+2ρcosθ=1的距离是    查看答案
如图,AB是⊙O的直径,延长AB到C,使BC=manfen5.com 满分网,切线BF分别交切线CD及AD的延长线于E、F,求∠F的度数.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.