满分5 > 高中数学试题 >

已知函数 (1)试判断函数f(x)的单调性; (2)设m>0,求f(x)在[m,...

已知函数manfen5.com 满分网
(1)试判断函数f(x)的单调性;
(2)设m>0,求f(x)在[m,2m]上的最大值;
(3)试证明:对∀n∈N*,不等式manfen5.com 满分网
(1)利用商的求导法则求出所给函数的导函数是解决本题的关键,利用导函数的正负确定出函数的单调性; (2)利用导数作为工具求出函数在闭区间上的最值问题,注意分类讨论思想的运用; (3)利用导数作为工具完成该不等式的证明,注意应用函数的最值性质. 【解析】 (1)函数f(x)的定义域是:(0,+∞) 由已知 令f′(x)=0得,1-lnx=0,∴x=e ∵当0<x<e时,, 当x>e时, ∴函数f(x)在(0,e]上单调递增,在[e,+∞)上单调递减, (2)由(1)知函数f(x)在(0,e]上单调递增,在[e,+∞)上单调递减 故①当0<2m≤e即时,f(x)在[m,2m]上单调递增 ∴, ②当m≥e时,f(x)在[m,2m]上单调递减 ∴, ③当m<e<2m,即时 ∴. (3)由(1)知,当x∈(0,+∞)时,, ∴在(0,+∞)上恒有, 即且当x=e时“=”成立, ∴对∀x∈(0,+∞)恒有, ∵, ∴ 即对∀n∈N*,不等式恒成立.
复制答案
考点分析:
相关试题推荐
如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0),M是线段EF的中点.
(1)求证:AC⊥BF;
(2)若二面角F-BD-A的大小为60°,求a的值;
(3)令a=1,设点P为一动点,若点P从M出发,沿棱按照M→E→C的路线运动到点C,求这一过程中形成的三棱锥P-BFD的体积的最小值.

manfen5.com 满分网 查看答案
若椭圆C1manfen5.com 满分网的离心率等于manfen5.com 满分网,抛物线C2:x2=2py(p>0)的焦点在椭圆的顶点上.
(1)求抛物线C2的方程;
(2)求过点M(-1,0)的直线l与抛物线C2交E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
查看答案
为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右图所示;由于不慎将部分数据丢失,但知道前4组的频数从左到右依次是等比数列{an}的前四项,后6组的频数从左到右依次是等差数列{bn}的前六项.
(1)求数列{an}和{bn}的通项公式;
(2)求视力不小于5.0的学生人数;
(3)设manfen5.com 满分网,求数列{cn}的通项公式.

manfen5.com 满分网 查看答案
化简f(x)=cos(π+2x)+cos(π-2x)+2(x∈R,k∈Z),并求函数f(x)的值域和最小正周期.
查看答案
已知圆的极坐标方程为ρ=2cosθ,则该圆的圆心到直线ρsinθ+2ρcosθ=1的距离是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.