已知函数f(x)=lnx+
,其中a为大于零的常数.
(1)若函数f(x)在区间[1,+∝]内调递增,求a的取值范围;
(2)求函数f(x)在区间[1,e]上的最小值;
(3)对于函数g(x)=(p-x)e
-x+1,若存在x
∈[1,e],使不等式g(x
)≥lnx
成立,求实数p的取值范围.
考点分析:
相关试题推荐
如图,已知椭圆
的长轴为AB,过点B的直线l与x轴垂直.直线(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率
.
(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.试判断直线QN与以AB为直径的圆O的位置关系.
查看答案
如图,在直三棱柱ABC-A
1B
1C
1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB
1上一点,且平面DA
1C⊥平面AA
1C
1C.
(Ⅰ)求证:D点为棱BB
1的中点;
(Ⅱ)判断四棱锥A
1-B
1C
1CD和C-A
1ABD的体积是否相等,并证明.
查看答案
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.
(Ⅰ)求取出的两个球上标号为相邻整数的概率;
(Ⅱ)求取出的两个球上标号之和能被3整除的概率.
查看答案
在△ABC中,a,b,c分别为角A、B、C的对边,且满足b
2+c
2-a
2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=
,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.
查看答案
请阅读下列材料:若两个正实数a
1,a
2满足a
12+a
22=1,那么a
1+a
2.证明:构造函数f(x)=(x-a
1)
2+(x-a
2)
2=2x
2-2(a
1+a
2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a
1+a
2)
2-8≤0,所以a
1+a
2.根据上述证明方法,若n个正实数满足a
12+a
22+…+a
n2=1时,你能得到的结论为
.
查看答案