已知椭圆
的左、右焦点分别为F
1、F
2,短轴两个端点为A、B,且四边形F
1AF
2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:
为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行总量为2000万张的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡).现有一个由36名游客组成的旅游团到上海参观旅游,其中
是境外游客,其余是境内游客.在境外游客中有
持金卡,在境内游客中有
持银卡.
(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(II)在该团的境内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案
设数列{a
n}中,若a
n+1=a
n+a
n+2,(n∈N
*),则称数列{a
n}为“凸数列”.
(1)设数列{a
n}为“凸数列”,若a
1=1,a
2=-2,试写出该数列的前6项,并求出该6项之和;
(2)在“凸数列”{a
n}中,求证:a
n+6=a
n,n∈N
*;
(3)设a
1=a,a
2=b,若数列{a
n}为“凸数列”,求数列前n项和S
n.
查看答案
设a、b是不共线的两个非零向量,
(1)若
=2a-b,
=3a+b,
=a-3b,求证:A、B、C三点共线.
(2)若8a+kb与ka+2b共线,求实数k的值;
(3)设
=ma,
=nb,
=α a+β b,其中m、n、α、β均为实数,m≠0,n≠0,若M、P、N三点共线,
求证:
+
=1.
查看答案
已知P为△ABC内一点,且
延长AP交BC于点D,若
=a,
=b,用a、b表示向量
、
.
查看答案
设i、j分别是平面直角坐示系Ox,Oy正方向上的单位向量,且
=-2i+mj,
=ni+j,
=5i-j,若点A、B、C在同一条直线上,且m=2n,求实数m、n的值.
查看答案