要确定解析式,即求a,b,c,d这四个参数,由f′(0)=c,且切线24x+y-12=0可解得c,把x=0代入24x+y-12=0可得P点的坐标为解d,再由函数f(x)在x=2处取得极值-16,解得a,b,从而求得解析式,然后由导数的正负来求单调区间.
【解析】
由y′=3ax2+2bx+c⇒f′(0)=c,
∵切线24x+y-12=0的斜率k=-24,
∴c=-24,把x=0代入24x+y-12=0得y=12.
得P点的坐标为(0,12),由此得d=12,
f(x)即可写成f(x)=ax3+bx2-24x+12.
由函数f(x)在x=2处取得极值-16,
则得解得
∴f(x)=x3+3x2-24x+12,f′(x)=3x2+6x-24.
令f′(x)<0,得-4<x<2.
∴递减区间为(-4,2).