满分5 > 高中数学试题 >

已知直线C1(t为参数),C2(θ为参数), (Ⅰ)当α=时,求C1与C2的交点...

已知直线C1manfen5.com 满分网(t为参数),C2manfen5.com 满分网(θ为参数),
(Ⅰ)当α=manfen5.com 满分网时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可, (II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线. 【解析】 (Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1. 联立方程组, 解得C1与C2的交点为(1,0). (Ⅱ)C1的普通方程为xsinα-ycosα-sinα=0. A点坐标为(sin2α,-cosαsinα), 故当α变化时,P点轨迹的参数方程为:, P点轨迹的普通方程. 故P点轨迹是圆心为,半径为的圆.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图:manfen5.com 满分网已知圆上的弧manfen5.com 满分网,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.

manfen5.com 满分网 查看答案
设函数f(x)=ex-1-x-ax2
(1)若a=0,求f(x)的单调区间;
(2)若当x≥0时f(x)≥0,求a的取值范围.
查看答案
设F1,F2分别是椭圆manfen5.com 满分网的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求E的离心率;
(2)设点P(0,-1)满足|PA|=|PB|,求E的方程
查看答案
为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
是否需要志愿       性别
需要4030
不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:manfen5.com 满分网
P(k2>k)0.00.0100.001
k3.8416.63510.828

查看答案
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点
(1)证明:PE⊥BC
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.