满分5 > 高中数学试题 >

如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上动点,F...

如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=BC=2,AA1=4.
(Ⅰ)求证:CF⊥平面ABB1
(Ⅱ)当E是棱CC1中点时,求证:CF∥平面AEB1

manfen5.com 满分网
(Ⅰ)欲证CF⊥平面ABB1,根据直线与平面垂直的判定定理可知只需证CF垂直平面ABB1内两相交直线垂直,而CF⊥BB1,CF⊥AB,BB1∩AB=B,满足定理条件; (Ⅱ)取AB1的中点G,连接EG,FG,欲证CF∥平面AEB1,根据直线与平面平行的判定定理可知只需证CF与平面AEB1内一直线平行即可,而CF∥EG,CF⊄平面AEB1,EG⊂平面AEB1,满足定理条件. 证明:(Ⅰ)∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC. 又∵CF⊂平面ABC, ∴CF⊥BB1. ∵∠ACB=90°,AC=BC=2,F是AB中点, ∴CF⊥AB. 又∵BB1∩AB=B, ∴CF⊥平面ABB1. (Ⅱ)证明:取AB1的中点G,连接EG,FG. ∵F、G分别是棱AB、AB1中点, ∴FG∥BB1,BB1. 又∵EC∥BB1,, ∴FG∥EC,FG=EC. ∴四边形FGEC是平行四边形, ∴CF∥EG. 又∵CF⊄平面AEB1,EG⊂平面AEB1, ∴CF∥平面AEB1.
复制答案
考点分析:
相关试题推荐
如图,两个圆形转盘A,B,每个转盘阴影部分各占转盘面积的manfen5.com 满分网manfen5.com 满分网.某“幸运转盘积分活动”规定,当指针指到A,B转盘阴影部分时,分别赢得积分1000分和2000分.先转哪个转盘由参与者选择,若第一次赢得积分,可继续转另一个转盘,此时活动结束;若第一次未赢得积分,则终止活动.
(Ⅰ)记先转A转盘最终所得积分为随机变量X,则X的取值分别是多少?
(Ⅱ)如果你参加此活动,为了赢得更多的积分,你将选择先转哪个转盘?请说明理由.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且a=1,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求sin(A+B)的值;
(Ⅱ)求sinA的值;
(Ⅲ)求manfen5.com 满分网的值.
查看答案
在数列{an}中,若an2-an-12=p(n≥2,n∈N×,p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的判断;
①若{an}是等方差数列,则{an2}是等差数列;
②{(-1)n}是等方差数列;
③若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列;
④若{an}既是等方差数列,又是等差数列,则该数列为常数列.
其中正确命题序号为    .(将所有正确的命题序号填在横线上) 查看答案
函数y=cos2x-sin2x+2sinx•cosx的最小正周期为     ,此函数的值域为     查看答案
某校从参加高三年级期末考试的学生中抽出60名学生,并统计了他们的化学成绩(成绩均为整数且满分为100分),把其中不低于50分的成绩分成五段[50,60),[60,70)…[90,100]后,画出部分频率分布直方图(如图),那么化学成绩在[70,80)的学生人数为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.