满分5 > 高中数学试题 >

数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*). (Ⅰ)求...

数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求数列{an}的通项an
(Ⅱ)求数列{nan}的前n项和T.
(I)利用递推公式an+1=2Sn把已知转化为an+1与an之间的关系,从而确定数列an的通项; (II)由(I)可知数列an从第二项开始的等比数列,设bn=n则数列bn为等差数列,所以对数列n•an的求和应用乘“公比”错位相减. 【解析】 (I)∵an+1=2Sn, ∴Sn+1-Sn=2Sn, ∴=3. 又∵S1=a1=1, ∴数列{Sn}是首项为1、公比为3的等比数列,Sn=3n-1(n∈N*). ∴当n≥2时,an-2Sn-1=2•3n-2(n≥2), ∴an= (II)Tn=a1+2a2+3a3+…+nan, 当n=1时,T1=1; 当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2,①3Tn=3+4•31+6•32+…+2n•3n-1,② ①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1=2+2•=-1+(1-2n)•3n-1 ∴Tn=+(n-)3n-1(n≥2). 又∵Tn=a1=1也满足上式,∴Tn=+(n-)3n-1(n∈N*)
复制答案
考点分析:
相关试题推荐
设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).
(I)求f (x)的最小值h(t);
(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
查看答案
manfen5.com 满分网如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(I)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的大小.
查看答案
甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0、7、0、6,且每次试跳成功与否相互之间没有影响,求:
(I)甲试跳三次,第三次才能成功的概率;
(II)甲、乙两人在第一次试跳中至少有一人成功的概率;
(III)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.
查看答案
在△ABC中,tanA=manfen5.com 满分网,tanB=manfen5.com 满分网
(I)求角C的大小;
(II)若AB边的长为manfen5.com 满分网,求BC边的长.
查看答案
中学数学中存在许多关系,比如“相等关系”、“平行关系”等等、如果集合A中元素之间的一个关系“-”满足以下三个条件:
(1)自反性:对于任意a∈A,都有a-a;
(2)对称性:对于a,b∈A,若a-b,则有b-a;
(3)对称性:对于a,b,c∈A,若a-b,b-c,则有a-c、
则称“-”是集合A的一个等价关系、例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立)、请你再列出两个等价关系:    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.